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Abstract—A generalization is obtained of the theorem on reconstruction of a binary code from
dimensions of its subcodes. The notion is proposed of a correlation coefficient of the family of
subcodes which, in the present consideration, is an analog for the dimension of a binary subcode.
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INTRODUCTION

Let us consider a q-ary cube En
q , the set of words of length n on the alphabet A = {0, 1, 2, . . . , q − 1}.

A Hamming distance d(x, y) between two words x, y ∈ En
q is defined as the number of symbols in

which x and y are distinct; i.e., d(x, y) = |{i | xi �= yi}|. A weight w(x) of the word x ∈ En
q is defined as

the number of its nonzero symbols, w(x) = d(x, 0). The cube En
q together with the Hamming distance

between its elements (vertices) forms a metric space. A code is defined as an arbitrary subset C of En
q .

The elements of a code are called codewords. Two codes are called equivalent if there exists an isometry
of En

q that maps one code to the other.

In the present article, we study some metric invariants of codes that generalize the notion of
dimension of a binary code [1] and establish the sufficiency of the proposed invariants for reconstructing
codes up to equivalence.

It is well known [1–5] that coincidence of some metric invariants of two codes does not mean that
the codes are equivalent. It turns out that, for q = 2, if there is a bijection between two codes which
preserves the dimension of each subcode then this bijection may be extended to an isometry of the whole
space. In other words, the collection of dimensions of the subcodes of a binary code defines this code up
to equivalence. Here, the dimension of a code means the dimension of a minimal face of En

2 containing
this code. Later, it has turned out [6] that the full collection of dimensions of the subcodes is superfluous,
it suffices to consider only the subcodes of even powers; i.e., the bijection between codes preserving these
dimensions may be extended to an isometry of En

2 , and the codes turn out equivalent.

Generalization of this approach, applied to the binary codes, does not lead to success for an
arbitrary q > 2. For example, there exist nonequivalent ternary codes that have a bijection preserving
the dimensions of their subcodes. Thus, in the general case, some finer methods are necessary for q-ary
codes. For clarity, we demonstrate the approach presented in this article on ternary codes. Generalization
to an arbitrary integer q can be obtained naturally (see Section 3).
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1. DEFINITIONS AND THE MAIN RESULT

Let C be a ternary code of length n. If all codewords of C have in some position the same symbol then
we say that this position is unessential for C. If C1 and C2 are some disjoint subcodes of C then we
denote by K(C1, C2) the number of coordinate positions which are nonessential for both subcodes but
in which the codewords of different codes have different values. Formally,

K(C1, C2) = |{i | ∃ a, b ∈ A, a �= b : ∀x ∈ C1 xi = a, ∀y ∈ C2 yi = b}|.

We call the value K(C1, C2) the correlation coefficient of C1 and C2. Note some characteristic identities
explaining this notion:

(i) K(x, y) = d(x, y), where x, y ∈ En
3 ;

(ii) K({x, y}, ∅) = n − d(x, y);

(iii) K(C, ∅) = n − Dim(C), where Dim(C) is the dimension of C.

Thus, by means of the correlation coefficients, we define, in particular, the distance between codewords.

In compliance with [6], a bijection I : C1 → C2 between the codes C1, C2 ⊂ En
3 is called a strong

isometry if it preserves the correlation coefficient of every pair of subcodes of C1. Let M1 be a code
matrix of C1, denote by M2 = I(M1) the code matrix of C2 obtained by applying I to each row of M1.
The main result of this article is the following

Theorem. Each strong isometry of the ternary codes can be extended to an isometry of the
ternary cube.

Let us consider a code C ⊂ En
3 of power m, and let M be its code matrix. For an arbitrary column

of M , the symbols of the alphabet A generates the alphabet partition of the set {1, . . . ,m} of numbers
of the rows: each subset of the partition contains all numbers of the rows in which the elements of
the column under consideration have the same value. For example, the partition ({1, 3}, {2, 4}, {5})
corresponds to the columns (0, 1, 0, 1, 2)� and (2, 1, 2, 1, 0)� , and still more five ordered partitions
differing from the given in order of writing the sets. For every 3-partition P , denote by k(P ) the number
of columns of the matrix M for which P is one of the six alphabet partitions.

Further, we adhere to the notations:

M = {1, . . . ,m} is the set of numbers of the rows of a matrix M ;

P = (P0, P1, P2), Q = (Q0, Q1, Q2), and R = (R0, R1, R2) are the alphabet partitions of M.

Given a subset S ⊆ M, let C(S) denote a subcode of C formed by the rows of M whose numbers are
in S. If it is clear what code is under consideration then, for P1, P2 ⊆ M, instead of K(C(P1), C(P2))
we write K(P1, P2).

It is easy to show

Proposition 1. Each bijection I : C1 → C2 can be extended to an isometry of all cube if an only
if, for every alphabet partition, the code matrices M1 and M2 = I(M1) contain the same number
of columns with such a partition.

On the set of alphabet partitions, we define the partial order � as follows:

(P0, P1, P2) � (Q0, Q1, Q2) ⇐⇒ P0 ⊆ Q0, P1 ⊇ Q1, P2 ⊇ Q2.

Note that, for a code C ⊂ En
3 of power m, its fixed code matrix M , and the alphabet partition P =

(P0, P1, P2), we have

K(P1, P2) =
∑

Q�P

k(Q). (1)
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2. RECONSTRUCTION OF TERNARY CODES
FROM THE CORRELATION COEFFICIENTS OF THEIR SUBCODES

The main step in the proof of the theorem is conversion of (1). In other words, our nearest aim is as
follows: Having the correlation coefficients of subcodes, we try to calculate the number of columns of
certain type in the code matrix.

Proposition 2. For a ternary code with an alphabet partition P , the number of columns in the
code matrix is equal to

k(P ) =
∑

Q�P

(−1)|P0|−|Q0|K(Q1, Q2). (2)

Proof. We proceed by induction on the power of P0. By (1), if P0 = ∅ then K(P1, P2) = k(P ). Thus, the
base of induction is constructed. Assume that the assertion is true for |P0| < s and prove it for |P0| = s.

From (1), transferring the terms, we obtain

k(P ) = K(P1, P2) −
∑

Q≺P

k(Q).

Further, using the inductive assumption, insert (2) in the last equation and change the order of
summation:

k(P ) = K(P1, P2) −
∑

Q≺P

∑

R�Q

(−1)|Q0|−|R0|K(R1, R2)

= K(P1, P2) −
∑

R≺P

(−1)−|R0|K(R1, R2)
∑

R�Q≺P

(−1)|Q0|. (3)

Fixing the partition R ≺ P , denote |R0| = t where 0 � t < s. In order to obtain the partition Q from
the interval between R and P such that |Q0| = t + i, it is necessary and sufficient that i elements of the
set P0 \ R0 be joined to R0. Here, i must assume any integer value from 0 to s − t − 1. Thus,

∑

R�Q≺P

(−1)|Q0| =
s−t−1∑

i=0

Ci
s−t(−1)t+i = (−1)t(1 − 1)s−t − (−1)t(−1)s−t = −(−1)s.

Taking into account (3), we continue and obtain

k(P ) = K(P1, P2) +
∑

R≺P

(−1)s−|R0|K(R1, R2) =
∑

R�P

(−1)|P0|−|R0|K(R1, R2).

The proof of Proposition 2 is complete.

Proof of the theorem. Proposition 2 implies that the matrices M1 and M2 have the same, up to
permutation, families of the alphabet partitions. It remains to apply Proposition 1 to complete the proof.

Corollary. Strong isometric codes are equivalent.

3. REMARKS
In conclusion, we present some judgments concerning generalization of the results of our article.
1. The theorem can be generalized to the codes over an alphabet of a power q as follows: For such

a code, it is necessary to take into account its correlation coefficient for an arbitrary q − 1 pairwise
nonintersecting subcodes. Such passage to the general case does not change the statement of the
theorem essentially.

2. The main goal in the proof of extendability of strong isometry, as it stated in the present article, is
to determine the column structure of the code matrices of the codes under consideration. Given the code
matrix of a ternary code of weight m we can find 3m different columns (for the codes of sufficiently large
length). Therefore, generally speaking, to determine the column structure of a code matrix, it is necessary
to calculate the 3m values which characterize the number of entrances of each m-column in the given
code matrix. Obviously, for this goal, the knowledge is superfluous of the correlation coefficients of each
pair of subcodes. Thus, the problem arises of finding a minimal family of the correlation coefficients which
is sufficient for reconstructing the code matrix and establishing the equivalence of codes.
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